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The isothermal  turbulent boundary layer is analyzed which forms during the flow of a i r  
through conical or  flat diffusers at Reynolds numbers in the 48,850-202,000 range in the 
entrance.  The relation between turbulent s t r e s ses  and the mean flow pa ramete r s  in the 
boundary layer  can be established on the bas is  of the data obtained here.  

In order  to calculate the friction which appears  at a solid surface in a liquid or a gas s t ream,  it is 
neces sa ry  to solve the Nav ie r -S tokes  and continuity sys tem of equations with the appropriate  constraints .  
This is a sys tem of second-orde r  nonlinear differential equations and, therefore ,  a mathematical  solution 
is very  difficult here.  

An effective method of solving this problem is to replace the sys tem of equations by the Prandtl  boun- 
dary  layer  equations. The latter, in conjunction with the continuity equation, make it ra ther  easy  to solve 
the friction problem for a laminar flow. When the flow is turbulent, however, difficulties a r i se  in the t rea t -  
ment of the boundary layer  equations as a resul t  of not knowing how the tangential and the normal  s t r e s se s  
a re  related to the mean flow paramete r s .  

In recent  years  one has often solved the problem by applying the momentum integral  equation (Kar- 
man equation) to the boundary layer: 

dO - - (H+2)-O0 dul + c t 1 d t ~ : (~  - -  
~ - =  u, d--~ T + u-~-~ ~ o  - v " ) d y  (1) 

0 

To this very  day there is no unanimous opinion as to the significance of the t e rm 

= ! (.'~ - v")  dy 

o 

This must  be attributed to the lack of sufficient experimental  data. 

We will analyze here the i sothermal  turbulent boundary layer  which forms during the flow of a i r  
through a conical of a flat diffuser.  The study was made using an aerodynamic duct of the open kind. The 
tes ts  covered a range of Reynolds numbers f rom 48,500 to 202,000 in the entrance (see Table 1). 

The conical diffusers were made 500 mm long with 100 mm entrance d iameters  and an 8 ~ or  a 10 ~ 
divergence angle. The important  variables  were measured  at sections 0, 30, 75, 135, 202, and 360 mm 
away from the entrance.  The flat diffuser had a 40 • 180 mm c ross  section at the entrance and was 174 mm 
long. The lower and the upper wall were movable so that the divergence angle could be varied. Tests  
were performed here with a 10 ~ 12 ~, and 14 ~ divergence angle. In all cases  the important  variables  were 
measured  at sections 0, 30, 60, 90, 130, and 170 mm away from the entrance.  

At each section we measured  the average velocity profile, the turbulence of the axial and the normal  
velocity components,  the turbulent shearing s t r ess  profile, and the corre la t ion  between axial and normal  
velocity pulsations at a tes t  point. 
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TABLE 1. Velocities of a Potential Flow 
and Corresponding Reynolds Numbers in 
the Entrance Sections of Diffusers 

Conical diffuser Fiat diffuser 
divergence, Reynolds iivergence. Reynolds 
angle, deg number angle, deg number 

10 

48500 
135500 
200000 

52700 
145700 
202000 

l0 58200 

12 57600 

14 58800 

The measurements  were per formed with a UTA-5B 
e lec t ro the rmoanemomete r  fully descr ibed in [t]. 

On the basis  of the test  data, an at tempt is made to 
establish the relation between turbulent s t r e s se s  and the 
mean flow paramete r s .  

For  convenience, the pa ramete r s  in Eq. (2) are  put 
in dimensionless form. 

The integral (2) can be written as 

6 

d _ (3)  

where u 1 =u l /u  0 is the dimensionless  velocity at  the edge of the boundary layer,  ~ = x / d ^ . .  is the dimen- 
~ 4 t t  

sionless coordinate,  and deq u is the equivalent diffuser d iameter  (deq u = 100 mm for the conical diffusers 
and deq u = 65.4 mm for the flat diffuser).  

The values of 
6 

- ( ~  _ ~ )  @ (4) 
deq u ~ 

were computed for each section of the boundary layer  under all flow conditions. An analysis  of the results  
has yielded the following relation 

L = cOH ~n, 

where O= 0/deq u is the dimensionless momentum thickness and c and m are constants.  

In o rder  to determine the exponent in this relation, the tes t  data have been plotted on a graph to a log 
- logscale  (Fig. 1). The t e s t  points are  seen to lie close to a s traight  line with the slope m =3. The con- 
s tan tc  is equal to  0.005. Thus, the turbulent s t r e s ses  may be related to the mean flow pa rame te r s  as follows: 

0.005 d ~  I =  u - - - ~ ,  " (0//~u~). (5) 

We will note that D. Ross [3] derived a relation between Reynolds s t r e s se s  and the mean flow param-  
e te r s  on the basis  of the P. Granville hypothesis that 

i (u '--~ - -  dy ,',,6*. 
o 

Using the data obtained by G. B. Schubauer and P. S. Klebanoff [2] and by J .  Laufer  [4], D. Ross 
[3] could derive the following kind of relation between turbulent s t r e s ses  and the mean flow paramete r s :  

2.67 ~-x I = ~ (0.006~*.9. (6) 

The integral  t e rm on the r ight-hand side of Eq. (1) will be evaluated here according  to formulas (5) 
and (6), on the bas is  of the experimental  data given in [2]. The calculated results  are  shown in Fig. 2 in 
dimensionless  coordinates .  The unit length is l =3.048 m and the unit velocity is the velocity at the x =5.38 
m section, where flow begins under d P / d x  > 0. The form factor H and the velocity distribution along the 
edge of the boundary layer  have been assumed known from the data in [2]. The coefficient of skin friction 
cf has been calculated by the Ludwig-T i lman  formula:  

cj = 0.246 10 -~ . 

It can be seen from Fig. 2 that both formulas (5) and (6) yield s imi la r  values for the integral I, with 
the Ross formula (curve 4) giving somewhat lower values than formula (5) (curve 3). 

The evaluation of the t e rms  in Eq. (1) has confirmed that, as separat ion is approached, the usually 
d is regarded last t e rm on the right-hand side of Eq. (1) becomes quite large and near  separat ion becomes 
comparable  with the f i rs t  te rm.  Therefore ,  the skin friction coefficient, which is obtained from the 

845 



6 

3 

| | 

m. i 

!~176 

f, 
I,a ce  

Fig. 1 

o, m6 
0 " -  

�9 2 
0,0/2 

a ~ 5 o,008 
" 6 

�9 7 

a 8 0,004, 

o ~ , . q  

f 7 2  ' 0 
(o ~z ~8 H 4s 

I 

:, / 

5.9 

m 

6,5 7/ x 

Fig. 2 

Fig. 1. The integral t e rm L/0  as a function of the form factor  H: flat diffuser 
with a 10 ~ (1), a 12 ~ (2), and 14 ~ (3) divergence angle; conical diffuser with an 
8 ~ divergence angle and with a Reynolds number 48,500 (4), 135,500 (5), and 
200,000 (6) in the entrance;  conical diffuser with a 10 ~ divergence angle and with 
a Reynolds number 52,700 (7), 145,700 (8), and 202,000 (9) in the entrance.  

Fig. 2. Values of individual t e rms  on the right-hand side of Eq. (1): I(H +2) 

0/u I �9 dul/dx (1), el/2 = 0.123.10 -~ Re 0 0.268 (2) (I/u~ �9 d/dx) .~(u' 2_ v' 2) dy (3-5), 
0 

withthe approximations according to Eqs. (5), (6), and (20), respectively (x,m). 

momentum equation with the integral term omitted, increases as separation is approached and this contra- 
dicts the experimental results where the values of cf have been determined from thermoanemometer mea- 
surements. 

Inser t ing (5) into (1), we obtain the Karman momentum equation: 

o r  

dO = _ (n + 2) ~ .  du, + cf 0,005 d (OH~u9 
~ ~ Y +  = - T - ' ~  (7) 

ct (H+2_O,Olm)_~B. aul+0,015on~ d_~ 
dO 2 u 1 dx dx  (8) 
dx ( 1 -- 0,005//3) 

It would be of in teres t  to study the change in momentum thickness calculated from the momentum 
equation with and without the turbulence t e rms  taken into account. This is best  done using the experimental  
data by Schubauer and KlebanofL 

The results  of calculations are  shown in Fig. 3, where the axial distribution of momentum thickness 
(as in Fig. 2, I =3.048 m) along the wing profile length is plotted from the x = 5.38 section with dP/dx > 0 
on. It can be seen here that the calculated I -curve ,  which includes the turbulence t e rms  in the near -  
separat ion regions, does not bend downward as does curve 2 calculated disregarding the turbulence te rms ,  
and this indicates the considerable effect of the turbulence components on the momentum thickness.  The 
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F ig .  3. Ef fec t  of n o r m a l  s t r e s s e s  on the magn i tude  of 0: a c c o r d i n g  to  Eq.  (1), a c c o r d -  
l a g  to  the  K a r m a n  m o m e n t u m  equa t ions  (2). The  po in t s  on the g r a p h  c o r r e s p o n d  to 
m e a s u r e d  v a l u e s  of m o m e n t u m  t h i c k n e s s .  

F ig .  4. R e l a t i o n  be tween  n o r m a l  and t a n g e n t i a l  s t r e s s e s  in a b o u n d a r y  l a y e r :  f l a t  
d i f f u s e r  with a 12 ~ d i v e r g e n c e  ang le  and Re = 57,600 a t  x = 0.46 (1) and x =2 .6  (2); 
c o n i c a l  d i f f u s e r  with a 10 ~ d i v e r g e n c e  ang l e ,  Re = 145,700 a t  x = 2.8 (3); a c c o r d i n g  to  
S c h u b a u e r -  Klebanof f  m e a s u r e m e n t s  [2] (4) a t  x = 7.46 m.  - 0/u t d u l / d x  = 0.0034 (1), 
0.0037 (2), 0.0036 (3), and  0.0037 (4). 

m e a s u r e d v a l u e s  o f m o m e n t u m t h i c k n e s s , a c c o r d i n g  to  the da ta  in [2], l ie s o m e w h a t  above  the c a l c u l a t e d  c u r v e  
a s  a r e s u l t ,  a p p a r e n t l y ,  of  s e c o n d a r y  flow m o d e s  p r o d u c e d  in the  wide  3.048 m long t e s t  s e g m e n t  of the  

S c h u b a u e r -  K lebanof f  p r o f i l e .  

Thus ,  a s  F i g s .  2 and 3 i n d i c a t e ,  the  i n t e g r a l  t e r m  in Eq. (1) m u s t  be t a k e n  into a c c oun t  when the 
m o m e n t u m  equa t ion  is  used  fo r  c a l c u l a t i n g  the b o u n d a r y  l a y e r  in a t u r b u l e n t  flow i m d e r  a pos i t i ve  p r e s s u r e  
g r a d i e n t .  D i s r e g a r d i n g  th i s  t e r m  would  g ive  r i s e  to  s i g n i f i c a n t  e r r o r s  in the  d e t e r m i n a t i o n  of the  f r i c t i o n  
c o e f f i c i e n t  and of the  m i x i n g  length n e a r  s e p a r a t i o n .  

A n o t h e r  a p p r o a c h  to  s o l v i n g  the p r o b l e m  is  to  e x p r e s s  the n o r m a l s t r e s s e s  in the i n t e g r a l  t e r m  (2) 
in t e r m s  of t a n g e n t i a l  s t r e s s e s :  

t i 
(u  '~ - -  v '~) = { (u  v ). 

F o r  th i s  p u r p o s e ,  the  loca l  v a l u e s  of the t a n g e n t i a l  s t r e s s  to  n o r m a l  s t r e s s  r a t i o  

_ 2u~v ~ z = _ (9) 
~l t2  - -  Ut 2 

a r e  c a l c u l a t e d  f r o m  the p u l s a t i o n  i n t e n s i t y  of the a x i a l  and the n o r m a l  v e l o c i t y  c o m p o n e n t s  and f rom the 
t u r b u l e n t  s h e a r i n g  s t r e s s  p r o f i l e  a t  the  v a r i o u s  b o u n d a r y  l a y e r  s e c t i o n s .  In F ig .  4 i s  shown the d i s t r i b u t i o n  
of ~t v a l u e s  a c r o s s  the b o u n d a r y  l a y e r  t h i c k n e s s  a t  d i f f e r e n t  s e c t i o n s  of c o n i c a l  and  f la t  d i f f u s e r s ,  t h e s e  
v a l u e s  hav ing  b e e n  ob ta ined  f r o m  our  m e a s u r e m e n t s  and f r o m  [2] a t  a p p r o x i m a t e l y  the s a m e  v a l u e s  of 
- 0/u 1 d u i / d x .  I t  i s  e v i d e n t  h e r e  tha t  t h e  magn i tude  of ~ f l uc tua t e s  c o n s i d e r a b l y  about  s o m e  m e a n  va lue ,  
whi le  the l a t t e r  d e f i n i t e l y  t e n d s  to i n c r e a s e  a s  the o u t e r  edge  of the b o u n d a r y  l a y e r  is  a p p r o a c h e d .  

In F ig .  5 a r e  shown the m e a n  v a l u e s  of ~ a t  v a r i o u s  b o u n d a r y  l a y e r  s e c t i o n s ,  a s  a funct ion o f - 0 / u  1 
�9 d u J d x ,  f o r d i f f e r e n t  R e y n o l d s  n u m b e r s  in the e n t r a n c e  s e c t i o n  of a f la t  and a c o n i c a l  d i f f u s e r .  On the s a m e  
d i a g r a m  a r e  shown the c o r r e s p o n d i n g  v a l u e s  m e a s u r e d  b y  Schubaue r  and Klebanof f  [2] and by  L a u f e r  [4], 
the s t r u c t u r e  of a t u r b u l e n t  b o u n d a r y  Layer in a f la t  channe l  hav ing  b e e n  t h o r o u g h l y  s tud ied  in [4]. The  
d i s t r i b u t i o n  of t e s t  po in t s  in F ig .  2 b a s e d  on m e a s u r e m e n t s  made  in [2] and  [4] does  not  p r o v i d e  su f f i c i en t  
e v i d e n c e  fo r  f i r m  c o n c l u s i o n s .  An o v e r a l l  a n a l y s i s  of a l l  po in t s  in F ig .  2 m a y ,  on the o t h e r  hand,  y i e l d  
an  a p p r o x i m a t e  r e l a t i o n :  

•  du~ (10) 
u~ dx 
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Fig. 5. P a r a m e t e r  n as a function of -0 /u l .du l /dx :  
flat diffusers with a 10 ~ (1), 12 ~ (2), and 14 ~ (3) d iver-  
gence angle; conical diffuser with an 80 divergence 
angle and Reynolds number 45,800 (4), 135,500 (5), and 
200,000 (6); conical diffuser with a 10 ~ divergence 
angle and Reynolds number 52,700 (7), 145,700 (8), and 
202,000 {9) in the entrance section; according to mea-  
surements  in [4] (10); according to measurements  in 
[2] (11). 

The values of coefficients k and b are  determined by the method of least squares:  k = - 19.60 and b = 0.883. 
The straight  line represent ing Eq. (10) approximates the tes t  data with a ~18.6% maximum deviation of tes t  
points for ~. 

In this way, 

- -  2u" v'  0 du~ 
= 0.883 + 19.6 - -  �9 (11) 

tt '~ - -  0 '2 U 1 d% 

O r  

12. r" _ _  0 t "  
2.27u'0' 

(12) 
i+  22.2 -~ �9 dul 

ul dx ) 

If the tangential shearing s t r e s ses  in the turbulent flow field are  known, then the normal  s t r e s s e s  can be 
calculated from Eq. (12). 

We will note that Ross [3] used the anisotropy of turbulent s t r e s ses  for express ing  the relation between 
normal  and tangential s t r e s ses  as 

- -  2 U ' V '  
tg 2o~ ' k13) 

where ~ is the angle between the principal axis of the turbulent s t r e ss  tensor  and the direction of mean 
flow. H. L. Dryden has suggested in [5] that the turbulent shear ing s t r ess  may be related to the local 
anisotropic turbulence and t h a t  tan2~ may be assumed approximately constant.  D. Ross has confirmed 
this hypothesis and, analyzing the data in [2] and [4], has found that for purposes of calculation one may 
assume tan2~ to be constant and approximately equal to 0.75, i.e., that 

u '~ - -  v'; = - -  2.67u--7~. (14) 

In analyzing the tes t  data in [2] and [4], Ross used the pulsation components of velocity u'  and v'  at 
the boundary layer section where dP/dx  = 0. This explains why the value of ~r obtained by him is indepen- 
dent of the p ressure  gradient.  
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An ana lys i s  of the veloci ty  pulsations measu red  by Schubauer and Klebanoff at  boundary layer  sect ions  
where  the p r e s s u r e  gradient  is posi t ive will show that  the tangential  s t r e s s  to no rma l  s t r e s s  ra t io  d e c r e a s e s  
somewhat  as the p r e s s u r e  gradient  i n c r e a s e s .  These  data can be sufficiently well  approximated  by the 

equation 

• = 0.81 q- 4.14 0 . du 1 
u 1 dx ' (15) 

A compar i son  between Eqs.  (12) and (14) with dul /dx =0 indicates  that  they yield close resu i t s .  

If  Eq. (12) is inse r ted  into Eq. (2), we obtain 

I 6 

I = 2.27 d oS 

U'V ~ dy 

u-~-l " ~ x  (1 q- 22.2 O . d//1 ] (16) 
U 1 dx ] 

Thus,  under  the in tegra l  in (16) there  appea r  tangential  s t r e s s e s  whose values can be taken f rom tes t s .  

K. K. Fedyaevski i  [6] has r ep resen ted  the tangential  shear ing  s t r e s s  distr ibution a c r o s s  a turbulent  
boundary  layer  sect ion in t e r m s  of a four th -degree  polynomial  in 7= y /5 .  With the boundary conditions 
taken into account,  this polynomial  is 

T __ "I: w 6 du 1 
pu] ,ou] (1 - -  4n 3 + 31] 4) . . . .  (q - -  3~ 3 + 2n') .  (17) 

u 1 dx 

This  equation does not account  for  the effect  of the profi le  fo rm fac tor  on T, and this fo rm fac tor  
v a r i e s  cons iderab ly  with the p r e s s u r e  gradient .  Moreover ,  it is convenient to rep lace  the boundary layer  
th ickness  in (17) by the momentum thickness  0. 

Based on a genera l iza t ion  of expe r imen ta l  data on turbulence and on the mean values of boundary layer  
p a r a m e t e r s  for  a flow of an incompress ib l e  fluid under  a posi t ive p r e s s u r e  gradient  [1], we have es tab l i shed  
the dis t r ibut ion of tangential  shear ing  s t r e s s e s  as :  

c, O dul { H - -  I.33 ~ 
- ~ - . h ( ~ ) - - -  �9 - h (~), 9u21 ) (18) u 1 dx 0.25H 

whe re 
[,0l) = 1 --2,1~11,1 q- l,lq2a; 

{ 6.66~1-- 11.1 lrl ~ for 
f2(*l) = ll.69(l'-~l) ~ -  12.53 (1--'q) ~ for 

0-~ n ,.< 0.3; 
0 . 3 ~ ] ~ <  1. 

The re fo re ,  e x p r e s s i n g  the tangent ia l  s t r e s s e s  accord ing  to (18) and inser t ing  these expres s ions  into 
(16) will yield 

I = - -  
2.27 . d.~ u----~ " dx I-O-~g-H t~ O1) dy 

u] dx ( 1 + 2 2 . 2  ~ " du___!_l ) 
t ul dx 

(19) 

Changing y to the var iab le  of in tegrat ion y/6 and a s suming  that  5 ~80 on the average ,  we can obtain 
a following expres s ion  for  the in tegra l  in (19).. 

I = I 
18.2 d 
u] dx 

Ou] [0.1775c I - -  0.48 Oul . 
dul (._1.33.)]] 
dx . 0.25H 

dU~dx ) 1 1 - 2 2 . 2 0 .  _ 
Ul 

(20) 

Such a r ep resen ta t ion  of the in tegra l  t e r m  (2) in the momentum equation (1) faci l i ta tes  i ts  numer ica l  eva lua-  
tion. This  in tegra l  t e r m  e x p r e s s e d  as  in (20) has been computed f rom the t es t  data in [2]. The resu l t  of 
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this computation is shown in Fig. 2 (curve 5) for a compar ison with the resul ts  obtained by formulas (5) and 
(6). It is evident that formula (20) yields a lmost  the same value for the integral  I as formulas  (5) and (6), 
but the authors believe that the method of calculating the in tegral  in the form (5) is somewhat s impler .  

x 

Y 
ul 

u0 
5 
6* 
0 
H 

eu = ( u ~ / u l ) ,  ~v = ( ~ u i )  
pu 'v ' ,  pu -'Ty' , pv --if' 

N O T A T I O N  

is the axial  distance along a diffuser,  measured  in the direct ion of flow; 
is the distance along the normal  to a diffuser,  measured  f rom the surface;  
is the mean velocity at the edge of a boundary Layer; 
is the mean velocity at the edge of a boundary layer  in the di f fuser  entrance;  
is the boundary layer  thickness;  
is the boundary layer  displacement  thickness;  
is the momentum thickness of a boundary Layer; 
is the form factor  of the veloci ty profile ac ros s  a boundary Layer 5*/e; 
a re  the turbulence intensity components of axial velocity; 
a re  the tengential and normal  s t r e s se s .  

1~ 
2. 

3. 

4. 
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